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ABSTRACT: We formulate the high temperature expansion in supersymmetric matrix quan-
tum mechanics with 4, 8 and 16 supercharges. The models can be obtained by dimen-
sionally reducing N/ = 1 U(N) super Yang-Mills theory in D = 4,6,10 to 1 dimension,
respectively. While the non-zero frequency modes become weakly coupled at high temper-
ature, the zero modes remain strongly coupled. We find, however, that the integration over
the zero modes that remains after integrating out all the non-zero modes perturbatively,
reduces to the evaluation of connected Green’s functions in the bosonic IKKT model. We
perform Monte Carlo simulation to compute these Green’s functions, which are then used
to obtain the coeflicients of the high temperature expansion for various quantities up to
the next-leading order. Our results nicely reproduce the asymptotic behaviors of the re-
cent simulation results at finite temperature. In particular, the fermionic matrices, which
decouple at the leading order, give rise to substantial effects at the next-leading order, re-
flecting finite temperature behaviors qualitatively different from the corresponding models
without fermions.
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1. Introduction

Recently large-IN gauge theories are playing increasingly important roles in string theory.
One of the crucial discoveries was that U(NN) gauge theory appears as a low energy effective
theory [ of a stack of N D-branes [J] in string theory. This led to various interesting conjec-
tures. For instance, large-N gauge theories obtained by dimensionally reducing 10d U(N)
super Yang-Mills theory to 0,1,2 dimensions are conjectured to provide non-perturbative
formulations of superstring/M theories [{—[.

Another type of conjectures asserts the duality between strongly coupled large- N gauge
theory and weakly coupled supergravity. In the AdS/CFT correspondence [, for instance,
it is conjectured that 4d N/ = 4 U(N) super Yang-Mills theory is dual to the type I1IB
supergravity on AdSs x S°. This duality is generalized to the finite temperature setup
[d and to non-conformal gauge theories [§]. Motivated by such dualities, large-N gauge
theories at finite temperature [fJ-[[J] have been studied intensively.

Monte Carlo simulation is expected to be a powerful approach to explore the phase
diagram of large-IN gauge theories. Indeed there was a remarkable progress in this direc-
tion recently. Supersymmetric matrix quantum mechanics have been studied by Monte
Carlo simulation for the first time [[3—[L5]. Ref. [[§], in particular, deals with the model
with 16 supercharges, which may be viewed! as the low energy effective theory of N DO-
branes in the type ITA superstring theory [[. The Monte Carlo results confirmed the
gauge/gravity duality from first principles. Unlike in the bosonic model [I6, [0, [7], no

!The model is formally the same as the non-perturbative formulation [E] of the M theory although the
large-N limit should be taken in a different way.



phase transition was observed at finite temperature, which is consistent with the prediction
based on the gauge/gravity duality [Ig, (1. Moreover, the internal energy at low temper-
ature agreed with that of the non-extremal black hole described by the dual geometry.
This implies in particular that the Bekenstein-Hawking entropy of the black hole is given
a microscopic origin in terms of the open strings attached to the constituent N DO-branes.
Unlike in Strominger-Vafa’s result [I9] for the extremal black hole, which relied on the
supersymmetric non-renormalization theorem, the agreement has been found by studying
the strongly coupled dynamics of the DO-brane effective theory directly. See refs. [2d,
for earlier works, which connect the supersymmetric matrix quantum mechanics at finite
temperature to the black-hole physics through the gauge/gravity duality.

In this paper we formulate the high temperature expansion in the supersymmetric
matrix quantum mechanics. While the low temperature behavior of the theory describes the
classical black hole, the high temperature behavior is expected to describe hot strings [R1].
We study the models with 4,8,16 supercharges that can be obtained by dimensionally
reducing N' =1 U(N) super Yang-Mills theory in D = 4,6,10 to 1 dimension. The high
temperature limit of the D = 10 case [[J] for N = 2 has been studied in ref. . As observed
there and also in refs. [I0, B3, only the bosonic zero modes survive at the leading order, and
their dynamics are governed by the bosonic part of the IKKT [H] matrix model. In order to
see the effects of the fermions, we proceed to the next-leading order. After integrating out
the weakly-coupled non-zero frequency modes perturbatively, we find that the remaining
integration over the zero modes reduces to the evaluation of connected Green’s functions in
the bosonic IKKT model. This can be done by Monte Carlo simulation with much less effort
than simulating the supersymmetric models at finite temperature directly. In particular,
we are able to make a reliable large-N extrapolation using the data for N up to 32. We
calculate the internal energy, the Polyakov line, and the extent of the eigenvalue distribution
explicitly for D = 4,6,10. Our results nicely reproduce the asymptotic behaviors of the
recent Monte Carlo data obtained for both supersymmetric models and bosonic models
at finite temperature. The different properties of the two classes of models are clearly
reflected in the next-leading order terms.

The rest of this paper is organized as follows. In section ] we define the model and the
observables we study in this paper. In sections [} and [] we present the calculations at the
leading order and at the next-leading order, respectively. Section [ is devoted to a summary
and discussions. In appendix [A] we derive a formula, which is used to calculate the internal
energy. In appendix Bl we present the form of Green’s functions used to evaluate them
efficiently in actual Monte Carlo simulation.

2. The models

The models we study in this paper are defined by the action

I 1 1 1 1
S = _2/ dt tr _(DtXi)2 + _T;Z)aDt¢a - _[Xian]Q - —%(%)aﬁ[Xz,W] ) (2'1)
2 J 2 2 4 2
where Dy = 0y — i[A(t), - | represents the covariant derivative. The bosonic matrices

A(t), Xi(t) (1 =1,2,...,d) and the fermionic matrices 1, (t) (o« = 1,2,...,p) are N x N



Hermitian matrices, where p = 4,8,16 for d = 3,5,9, respectively. The models can be
obtained formally by dimensionally reducing N' = 1 super Yang-Mills theory in D =d + 1
dimensions to one dimension, and they can be viewed as a 1d gauge theory, where A(t),
X;(t) and 1, (t) are the gauge field, adjoint scalars and spinors, respectively. The p X p
symmetric matrices 7; obey the Euclidean Clifford algebra {;,v;} = 26;;. We impose
periodic and anti-periodic boundary conditions on the bosonic and fermionic matrices,
respectively. The extent # in the Euclidean time direction ¢ then corresponds to the
inverse temperature 8 = T
The action is invariant under the shifts

A(t) — A(t) + a(®)L,  Xi(t) — X;(t) + 241, (2.2)

where «a(t) is an arbitrary periodic function and x; is an arbitrary constant. In order to
remove the corresponding decoupled modes, we impose the conditions

tr A(t) =0, /BdttrXi(t):O (1=1,2,...,d) . (2.3)
0
The 't Hooft large-N limit corresponds to sending N to oo with the 't Hooft coupling
constant A = g?N fixed. Since the coupling constant g can be absorbed by rescaling the
matrices and ¢ appropriately, we can set A to unity without loss of generality. This implies
that we replace the prefactor g% in the action (RJ)) by N in what follows.

We define the extent of the eigenvalue distribution and the Polyakov line as

R2 = Niﬁ/oﬁdttr (Xi(t)>2, (2.4)
P = ctrPexp <z /O 6th(:5)> , (2.5)

where the symbol “P exp” represents the path-ordered exponential.
As a fundamental quantity in thermodynamics, the free energy F = —%ln Z(0) is
defined in terms of the partition function given in the present model as

2(5) = [ DA XD, 26)

where the suffix of the measure [ - |5 represents the period of the field to be path-integrated.
However, the evaluation of the partition function Z(3) is not straightforward in Monte
Carlo simulation, which we use for the integration over the zero modes. We therefore
study the internal energy defined by

d d
%(ﬁf) = —@logz(ﬁ% (2.7)

which has equivalent information as the free energy, given the boundary condition F =

E =

E at T = 0. Note also that the internal energy at T" = 0 provides the ground state
energy of the quantum mechanical system, which should vanish unless the supersymmetry is



spontaneously broken. In appendix [A] we show that the internal energy E can be expressed
as

E
Nz (&) + (&) (2.8)
where the operators &, and & are defined by
g= 3L [T (. x (2.9)
b = ANG o r iy 4% j > .
= 2 it (vuon)osl o] (2.10)
f = 4Nﬁ 0 r 1/104 Yi)op zﬂ/fﬁ . .

The symbol ( - ) represents the expectation value with respect to the model (R.])).
Let us take the static gauge 0;A(t) = 0. Correspondingly we add the ghost term

S = N /0 it (@E(t)Dtc(t)) (2.11)

to the action, where ¢, ¢ are N X N matrices representing the ghosts. We make a Fourier
expansion of the fields as

X;(t) = Z X! exp(inwt), Pa(t) = Z P exp(irwt) , (2.12)
c(t) = Z cn exp(inwt) c(t) = Z ¢ exp(—inwt) , (2.13)
n#0 n#0

where w = %” represents the unit of Matsubara frequencies, and the indices n and r take

integers and half-integers, respectively, due to the imposed boundary conditions. In terms
of the Fourier modes, the gauge-fixed action is written as

S = 50+ Skin + Sint (2.14)
1 N o wir)
s0= -6 uf5(ax) + 3 (.x) | (2.15)
— 1 2yi oy 2 1 ;
Skin = NG tr{§ Z(nw) X, X, + Z(nw) CnCn + 3 Z zrww_ri/}r} , (2.16)
n#0 n#0 r
i i = i
St = —NS tr{ D nwX (A X+ nwen[A, c,] + 5 > b A1) (2.17)
n#0 n#0 r
L i L i i 1 i iy yd
+§ Z wr'Yi[Xfrfs’ ws] + 5 Z[Aa an] [Aa Xn] + Z Z ' [anfpfq’ ng] [Xp’ X(J]]} 3
r,s n#0 npq

where the symbol Y’ implies that the m=p=¢=0 term is excluded.

3. Leading order calculation

In this section we consider the high temperature limit [22, [[0], BJ], which corresponds to the
leading order calculation at high 7. From (R2.14]), one can easily see that all the non-zero



modes decouple, and one is left with the zero modes governed by the action (PR.15). By
rescaling the zero modes as

A =T7Y4X) (i=1,2,...,d), Ap=T"1*A, (3.1)

where we recall that D = d 4 1, the zero-mode action can be brought into the form

1 - L
So = 7 Ntr (Fu)?, Fu=-i[4,4,). (3.2)
Here and henceforth, the Greek indices p, v are assumed to run over 1,2,...,D. The
dimensionally reduced (DR) model (B.9) is nothing but the bosonic part of the IKKT type

matrix model P4-Pf]. The leading behavior of the observables at high temperature can
be obtained as

1 ~
(@)= L) = ar, 63)
DR
(P) ~1— Lpsp /Ly, (Ap)?) =1- 1 x1 T3/ (3.4)
) N bR 2d ’ '
1 3../1 - 3

where ( - )pr represents the expectation value with respect to the DR model, and the
coeflicients y1 and o are given as

= <% r (Ai)2>m _ % <% r (A“)2>DR , (3.6)

Yo = <% r (Fl-j)2>DR _ % <% r (FW)2>DR —(d—1) (1 - %) LB

We note that the expectation values appearing here are standard quantities calculated in
the DR model (B.3) by various methods [R5, Pf]. In particular, the quantity in eq. (B.7)
can be obtained exactly by simply rescaling the dynamical variables or by writing down
the Schwinger-Dyson equation [RF].

4. Next-leading order calculation

As is clear from the previous section, the leading order results are insensitive to the existence
of fermions. In order to see their effects, we need to proceed to the next-leading order
calculation, which involves the integration over the non-zero modes.

For that purpose, let us rescale the non-zero modes as
X:L = B_l/Q Xrim 127’ :¢T, Cn :ﬂ_l/z Cn s én :ﬂ_l/z éna (4-1)

where n # 0, so that the kinetic terms take the canonical form

1 S o = . 1 L s
Skin = N tr{§ %(2%71)2 X, X, + %(2%71)2 CnCp, + 3 ; 2mir z/),n/)r} . (4.2)
n n



Then the propagators are given by

<<(Xrin)ab()?1‘z,)€d>> = m 0i§0m,—naddbe , (4.3)
<<(1/~1ar)ab(1;6s)cd>> = ﬁ 0a30r,—s0adSbe , (4.4)

<<<6m>ab<én)cd>> - m SonnBactOre (4.5)

where the symbol (( - )) represents integrating only the non-zero modes using the quadratic
terms ([.9). The interaction terms are given by Siy = — Z?:l V;, where

Vi = VeN Y ntr (X@'n[AD,X;‘LO , M=VeN)D ntr <6n[AD,6n]> :

n#0 n#0

ng—\fNZtr< AD,%]), \fNZtT< —r7il i,l/;r]>,

V5 = 5 ENZtr ([AD)XZ—nHAD’X;T]> ’
n#0
1 o o . ~ .~
Vo= eNY b ({Ai,Xﬂn][Ai,XgL] + [AiaX]nHX:wAj]> : (4.6)
n#0

We have introduced the expansion parameter? ¢ = 332, and omitted terms, which are
irrelevant to the calculations at the next-leading order.

First we calculate the extent of the eigenvalue distribution (2.4), which can be decom-
posed as

1
R? = ~ Ztr (Xixt,). (4.7)
n;ﬁO

Let us consider the first term. The leading order contribution is given by (B.3). At the
next-leading order, we use the vertices ({.f) and integrate over the non-zero modes at
one-loop making use of the formulae

1 1 1 1
r;) (27n)? T 127 ; (27r)? T4 (48)

to sum over the Matsubara frequencies in the loop. This gives rise to the operators written
in terms of zero modes as

01 = S(M1P) =SNG (ApP, Op= 3( ) = ;N6 (ApP?,
0y = 5 (Vo)) = —§NG 2t (Ap)?, 01 = (V) = EN G2 (A,

21f we left the 't Hooft coupling constant A arbitrary, we would find that the expansion parameter is
given by ev/A = \/A/T3. This is what one might have deduced on dimensional grounds, since the 't Hooft
coupling constant has the dimension of (mass)® in the present models.



d . d
Os = (Vs)) = —ENﬂ?’/?tr (Ap)?, O = (V) = —TNB?’/%r( 2. (4.9)
Summing up these operators, we obtain
0 d—1 p
— (2= _F 3/2 132 _ i \2
@ j;(’)] ( 3 8>Nﬁ {tr (A;)* —tr(Ap) } . (4.10)

Using this operator, we can evaluate the first term in eq. ([£7) as

i) = (g wodr) (g ud? o)

d—1
—at - (- E ) T O )
where the subscript “c” implies that the connected part is taken, and we define the coefhi-
cients x3 and x4 by
X3 = <tr (A;)? - tr (AJ)2> , X4= <tr (A;)? - tr (AD)2> . (4.12)
DR,c DR,c

The second term of eq. ({7]) can be calculated at the next-leading order using the propa-
gator (@), and we get

N Z <tr (X, X2 > ~ %Z <<tr (XZXin)>> = % T4 O(T %) .  (4.13)

n#0 n#0

Adding the two terms, we get the result at the next-leading order as

(R%) = xaT'/? + {flz (% - g)% - X4)} T 4+ 0(T™2?%) . (4.14)

Let us calculate the internal energy (B.7) using (B.§). The operators &, and & can be
decomposed as

T .
& = tr (Fy)? -

N Ve+---, E=—

Vit (4.15)

N23 2N2p3

where we have omitted terms irrelevant at the next-leading order. The expectation values
can be calculated as

(&) ~ %T {<%tr (Fij)2>DR + <%tr (Fy)? - O>DR,C} B Ni%<«V6 >>>DR

3 1 3/d—-1 _ _
= ZXZT-F {Z(d_ 1)x1 — Z(T — §>(X5 — X6)} T-1/2 + O(T 2) , (4.16)
) = o (V2 ==L T2 0172 (4.17)
2N23 DR 8 ’
where we define the coefficients
X5 = <tI‘ (Ej)z - tr (Ak)2> , X6 = <tI‘ (Fl'j)Q - tr (AD)2> . (418)
DR,c DR,c



Adding these terms, we get the result for the internal energy as

E 3 3/d—-1 _ _
m=1X2T‘Z<T‘§)<X5—X6—4X1)T Po(r) . (19)

Similarly the Polyakov line can be calculated as

o=y (o), o (o o), )

1 1 .
— T3 —tr(Ap)*
+24 <Ntr( ») >DR
1 1/d—1 »p

IS Sy S 0 1/d—1 p B -3 —9/2
=1-g Tl +{24x8+2< T 8>(X4 X7)}T +O(T77%), (4.20)

where we define the coefficients y7 and xg by
_ i \2 T2 _/1 i \4
X7 = <t1“ (AD) ny (AD) > , X8 = <—t1“ (AD) > . (421)
DR,c N DR

Thus we have obtained various quantities up to the next-leading order with the co-
efficients y;, which can be obtained by Monte Carlo evaluation of the connected Green’s
functions in the DR model (B.9). In practice, we rewrite the Green’s functions as described
in appendix [§ in order to increase the statistics. The values of x; obtained in this way?>
for d = 3,5,9 and for various N are summarized in table [Il. In order to see the large-N
behavior [RH], we plot the values of x; against 1/N? for 12 < N < 32 in figure . We
observe that the data points for N = 16,20, 32 lie on a straight line. This enables us to
obtain the large-N extrapolated values shown in table [l

Using the coefficients x; extrapolated to N = oo, we evaluate the expres-
sions (f.14), (£.19) and (f.20). The results for the bosonic case can be readily obtained by
setting p = 0 in the same expressions. In figure f] we show various quantities as a function
of T for d = 3 (left column) and d = 9 (right column), respectively. The curves repre-
sent the results of the high temperature expansion.* The solid lines represent the leading
order results, which are the same for the bosonic and supersymmetric cases. The dashed
lines and the dash-dotted lines represent the next-leading order results for the bosonic case
and the supersymmetric case, respectively. For comparison, we also plot the recent Monte
Carlo data obtained at finite T" for the bosonic model with d = 3 [PJ] and d = 9 [[7], and
for the supersymmetric model with d = 9 [[[5]. In both bosonic and supersymmetric cases,

the high temperature expansion including the next-leading order terms seems to be valid
at T 2 2.

3The heat-bath algorithm as described in ref. [E] has been used for Monte Carlo simulation. We have
made 25M sweeps for d = 3,5 and 8M sweeps for d = 9 to obtain the data. We have checked that the
expectation value appearing in the definition (E) of x1 agrees with the previous results [@

4In refs. [E, B, E], we have presented the results of the high temperature expansion using the coefficients
X obtained at the same N as those used for Monte Carlo simulations at finite temperature. The quality of
the agreement with the Monte Carlo data at high T is almost the same as in the present plots.



d| N X1 X3 X4 X5 X6 X7 X8
304 1.48(1) | 2.79(8) | -0.48(5) | 3.29(1) | -0.70(4) | 1.40(5) | 0.60(1)
31 8| 1.6579(4) |2.756(7) | -0.751(4) |3.294(6) |-1.162(5) | 1.419(4) | 0.6581(4)
3110 1.6305(3) | 2.56(1) | -0.718(9) | 3.32(1) | -1.10(1) | 1.33(1) | 0.6342(9)
3112 1.6295(3) |2.319(6) | -0.708(4) |3.195(7) | -1.140(6) | 1.245(4) | 0.6239(3)
3116 1.6229(1) |2.230(4) | -0.720(3) |3.148(5) | -1.102(5) | 1.223(3) | 0.6156(1)
3120 1.6198(1) |2.070(4) | -0.677(9) |2.970(1) | -1.04(1) | 1.142(7) | 0.6123(1)
3132 1.61697(4) | 1.940(6) | -0.633(3) |2.797(9) |-0.981(5) | 1.069(4) | 0.60780(5)
300 | 1.6150(1) | 1.83(1) |-0.6039(6) | 2.676(9) | -0.940(2) | 1.016(5) | 0.6051(2)
5 1.821(1) | 1.56(1) | -0.209(3) | 3.53(1) |-0.732(8) | 0.481(4) | 0.2812(8)
508 | 1.8331(2) |1.181(2) |-0.2157(7) | 3.564(7) | -0.703(2) | 0.4087(8) | 0.2778(1)
510 | 1.8356(6) |1.179(6) | -0.232(2) | 3.68(1) |-0.732(8) | 0.421(2) | 0.2785(2)
512 1.8377(3) | 1.153(3) | -0.229(1) |3.633(9) |-0.703(2) | 0.414(1) | 0.2788(1)
5(16 | 1.83935(9) | 1.141(2) | -0.2251(9) | 3.658(7) | -0.723(2) | 0.4084(8) | 0.27893(3)
5120 | 1.8387(1) |1.104(2) | -0.2220(8) | 3.544(6) | -0.718(2) | 0.3985(8) | 0.27866(4)
51032 1.8393(3) |1.041(3) |-0.2282(5) | 3.35(1) |-0.744(1) | 0.3909(7) | 0.27874(1)
5[ 00| 1.8382(8) | 1.01(1) | -0.229(3) | 3.27(4) |-0.751(9) | 0.384(1) |0.27868(5)
9 2.191(1) |0.769(5) | -0.0925(5) | 3.99(1) |-0.558(2) | 0.1681(6) | 0.1199(1)
91 8 [ 2.2700(2) |0.746(1) |-0.0861(3) | 4.34(1) |-0.510(1) | 0.1595(2) | 0.12894(3)
9110 2.2810(5) |0.766(3) | -0.0859(6) | 4.44(2) |-0.506(3) | 0.1615(5) | 0.13045(7)
9|12 2.2854(3) |0.751(4) | -0.0863(6) | 4.44(2) |-0.510(1) | 0.1602(2) | 0.13114(3)
9116 | 2.2901(1) |0.746(2) |-0.0886(5) | 4.43(1) |-0.525(3) | 0.1617(2) | 0.13163(2)
9120 2.2932(3) |0.734(3) | -0.0912(9) | 4.40(2) | -0.55(1) |0.1631(6) | 0.13204(3)
9| 3212.29566(7) | 0.730(6) | -0.082(1) | 4.38(2) | -0.59(1) | 0.1399(1) | 0.13234(1)
9| oo | 2.2975(1) [0.719(6) | -0.082(6) | 4.36(2) | -0.61(2) | 0.14(2) |0.13257(5)

Table 1: The values of x; (i =1,3,...,
of the corresponding DR model. The values at N = oo are obtained by extrapolating the results
for N = 16,20, 32 as shown in figure [.

8) for various d and N obtained by Monte Carlo simulation

5. Summary and discussions

In this paper we have formulated the high temperature expansion for the supersymmet-
ric matrix quantum mechanics with 4, 8 and 16 supercharges. While the non-zero modes
become weakly coupled at high temperature, the zero modes remain strongly coupled and
hence they have to be treated non-perturbatively. This makes the problem nontrivial, but
we are able to obtain the next-leading order terms by evaluating connected Green’s function
in the bosonic IKKT model using Monte Carlo simulation. Since the fermions decouple at
the leading order, it is highly motivated to carry out the next-leading order calculation.
Indeed, our results including the next-leading order terms are in good agreement with the
finite temperature calculations down to 1" ~ 2 in units of the 't Hooft coupling constant.
Note also that Monte Carlo evaluation of the connected Green’s functions in the bosonic
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Figure 1: The coefficients x; (i = 1,3,...,8) for d = 3,5,9 and 12 < N < 32 evaluated by
Monte Carlo simulation of the corresponding DR model are plotted against 1/N2. The straight
lines represent fits to the expected large-N behavior a + b/N? using the N = 16,20, 32 data points.
The extrapolated values are shown in table [l| as results at N = oco.
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IKKT model is by far easier than simulating the supersymmetric matrix quantum mechan-
ics at finite temperature directly. This enables us to study the behavior at larger N and
to make a reliable large-IN extrapolation. Our results confirm that the values of N used
in finite temperature simulations are already large enough to probe the 't Hooft large-N
limit at high temperature.

It is straightforward to extend our calculation to higher orders. For that, one needs
to evaluate connected Green’s functions with more than two operators inserted. That
will require more statistics in Monte Carlo evaluation. For finite IV, it is anticipated that
the connected Green’s functions with many insertions of the tr (/LL)Q operator would be
divergent 27, and the order at which such divergence shows up would grow linearly with N.
This property of the high temperature expansion is reminiscent of the infrared instability
observed in Monte Carlo simulation of the supersymmetric model at finite temperature [[[5].
We note, however, that the divergence in the high temperature expansion occurs also in
the bosonic case, in which the finite temperature calculations exhibit no such instability.

It is worth while to generalize our formulation to higher dimensions. For instance,
an interesting phase structure is expected in 2d U(N) N = 8 super Yang-Mills theory
on a finite torus.® In the strong coupling and low temperature regime, the gauge/gravity
duality predicts , @] that there exists a phase transition corresponding to the black-
string/black-hole transition [BJ] in the dual gravity theory. In the weak coupling and high
temperature regime, on the other hand, one can study the theory by dimensionally reduced
1d bosonic model. In ref. [[[]], the phase transition observed in the latter regime has been
conjectured to be a continuation of the phase transition in the former regime. In ref. [[[7]
the critical region of the dimensionally reduced 1d bosonic model has been studied more
carefully, and a new phase characterized by the non-uniform eigenvalue distribution of
the holonomy matrix has been discovered. Of particular interest from the viewpoint of
the gauge/gravity duality is to investigate the fate of this new phase as one lowers the
temperature. Calculations including the next-leading order terms in the high temperature
expansion would be useful for such purposes.
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A. Derivation of the formula for the internal energy

In this appendix we derive the formula (R.§), which is used to calculate the internal energy
by the high temperature expansion. The case without fermions is given in ref. [I7]. Let us

®The situation becomes more involved in dimensions higher than two. Recently cascade transitions
from the black p-brane solution to the black (p — 1)-brane solution have been found in the dual gravity
theories [E] On the other hand, the high temperature limit of the 4d U(N) A = 4 super Yang-Mills theory
on a finite torus, for instance, is described by the dimensionally reduced 3d bosonic model. Analogous
cascade transitions were observed earlier in the large-N pure Yang-Mills theory on a 3d torus @] and in a
related model [@]
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first rewrite (R.7) as

_ - Z(B') - Z(B)
E=—Z@dm, ™ ag (A-1)
where 3’ = 3+ AS, and represent Z (') for later convenience as
2(5) = [ DA PX )y (D)o (A2)

where S’ is obtained from S given in (B.1) by replacing 3, ¢, A(t), X;(t), ¥a(t) with 3', ¢,
A'(t), X[(t'), ¢, (t'). In order to relate Z (') to Z(f3), we consider the transformation

/_é, 14l :E 1y — @ ] 14y —
=3t Al) =740, X(t) \/;X@(t), Pt) = 9(t), (A.3)

where the constant factors are motivated on dimensional grounds, and we have [DX']|g =
[DX|3, [DY']g = [DyY]s and [DA’|g = [DA]z. Under this transformation, the kinetic term
in S’ reduces to that in S, but the interaction term transforms non-trivially as

faee (o xgen) = (5) [ (roxo)’s s
/Oﬁ/dttr <¢a<tf>[xi'<t'>,¢2a<t/>]> _ <%>3/2 /Oﬁdttr <¢Q[Xi<t>,¢g<t>]). (A5)

This gives us the relation
Z(8') = Z(8) (1 = N*AB (&, + &) + O((AB)?)) (A.6)

where the coefficients &, and & are defined by (R.9) and (R.10). Plugging these into ([A.1),
we get (R.§). Thus we are able to express the internal energy E in terms of the expectation
values, which can be calculated directly by Monte Carlo simulation.

B. Increasing statistics by exploiting SO(D) symmetry

In egs. (B.6)) and (B.7), we have rewritten the expectation values that define y; and X2
by exploiting the SO(D) symmetry of the DR model (B.9). Similar rewriting can be done

also for the other coefficients x; (i = 3,...,8) defined in eqs. ({.19), (£.1§) and ({4.21]) as
presented below. In actual measurements in the Monte Carlo simulation, we can increase

the statistics considerably by using these forms instead of the original ones.

v S (e u @) BES (na e ey

Iz pC2 u<v DR,C
d < i\2 T2

X4 = —— tr(A4,)° - tr(4,) > ,

DC2 l;’ a DR,C

24Cs oo\2 i 2 i \2
X5 = D (tr (Flw)? - tr g (A,)° + (A)

pCo DR,C

n<v )
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_2dCQZ Z <tI‘ ~,u1/2 tr(A)\) >DRC’

D —2)pCy

B<V A£p,v
= S SN (B (A
X6 _2 D 5 ;u/ A )
U<V A, DR,C
X7:Dz<m Prd)
DR,C
1<1 _
Xs = =( =tr(4,) > . (B.1)
D\N " DR
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